Non-Negative Matrix Factorization for the Analysis of Complex Gene Expression Data: Identification of Clinically Relevant Tumor Subtypes
نویسندگان
چکیده
Non-negative matrix factorization (NMF) is a relatively new approach to analyze gene expression data that models data by additive combinations of non-negative basis vectors (metagenes). The non-negativity constraint makes sense biologically as genes may either be expressed or not, but never show negative expression. We applied NMF to five different microarray data sets. We estimated the appropriate number metagens by comparing the residual error of NMF reconstruction of data to that of NMF reconstruction of permutated data, thus finding when a given solution contained more information than noise. This analysis also revealed that NMF could not factorize one of the data sets in a meaningful way. We used GO categories and pre defined gene sets to evaluate the biological significance of the obtained metagenes. By analyses of metagenes specific for the same GO-categories we could show that individual metagenes activated different aspects of the same biological processes. Several of the obtained metagenes correlated with tumor subtypes and tumors with characteristic chromosomal translocations, indicating that metagenes may correspond to specific disease entities. Hence, NMF extracts biological relevant structures of microarray expression data and may thus contribute to a deeper understanding of tumor behavior.
منابع مشابه
eMBI: Boosting Gene Expression-based Clustering for Cancer Subtypes
Identifying clinically relevant subtypes of a cancer using gene expression data is a challenging and important problem in medicine, and is a necessary premise to provide specific and efficient treatments for patients of different subtypes. Matrix factorization provides a solution by finding checker-board patterns in the matrices of gene expression data. In the context of gene expression profile...
متن کاملIdentification of Tumor Subtypes of Endometrial Carcinoma by Integration of Heterogeneous Datasets
Clustering algorithms have been applied to the identification of new subtypes of human cancer. Clustering of heterogeneous datasets represents a difficult clustering problem to which some clustering methods cannot be easily extended. Clustering methods based on matrix computations, such as non-negative matrix factorization (NMF), can be modified to deal with this complex problem. In this paper,...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملExploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کامل